Signalling Relay

RA 70

EAW

Description and Use of Equipment

The RA 70 signalling relays are used to signal and monitor operating states, malfunctions and faults in energygenerating plants, energy-distributing plants and in almost all industrial plants.
For example, they are used to signal:

- operating states in electrical components and plants
- limit violations of pressure, temperature, a.o.
- malfunctions due to the reaction of the protective equipment pertaining to transformers, motors and generators in energy-generating and energy-distributing plants, etc.
- voltage failures during the monitoring of control circuits

The signalling information (e.g., faults, malfunctions, voltage failure, etc.) is saved until it is acknowledged by manually operating the drop indicator and removing the signalling cause.
The contacts operated by the signalling relay in case of a signalling information can be used for visual and/or acoustic indication of for activating other relays, for example to disconnect faulted systems.
If necessary, a passing contact allows to control an acknowledged circuit to centrally signalize faults or other signalling information.

Configuration of Equipment

It consists of a black molded enclosure, cap with inspection window detachable for customer-tailored labeling (customer labeling may be done by the manufacturer, if requested), manual operation button for the drop indicator at the front of the enclosure.
Screw terminals are arranged at the base plate.
Magnetic system (with DC) made of magnetically soft relay iron, with AC made if a FeAl11 special alloy, clapper armature with knife-edge bearing, tripping of drop indicator through mechanical jack and reset by manual operation, two directly or indirectly operated contacts in the following variants:

- 2 changeover contacts
- 1 changeover contact and 1 passing contact
- 1 changeover contact and 1 make contact in center position
- 1 make contact in center position and 1 passing contact
- 1 changeover contact, directly operated and 1 changeover contact
- 1 changeover contact, directly operated and 1 passing contact
- 1 changeover contact, directly operated and 1 make contact in center position

Depending on the information to be shown, the drop indicator has the following colors:

- Initial state white display field
- Signalling state:
- Acknowledgement state:
red M on white field
black M on white field

Mode of Functioning

During the operation the drop indicator changes from normal position to signalling position. This position is maintained even if the signalling cause is not longer there.
If the signalling cause is still there, the acknowledgement state is reached by manual operation; if the signalling cause is not longer there, the normal position is reached.
If, in the acknowledgement state, the signalling cause is not longer on, it automatically switches to the normal position. These relay functions can be realized in open-circuit arrangement as well as in closed-circuit arrangement.
For functions of open-circuit and closed-circuit arrangement, see the following table:

	Initial state	Indication	Acknowledged*		
			Signalling cause removed		
operating current there	magnetic system: not energized	magnetic system: energized	magnetic system: energized	magnetic system: not energized	
closed-circuit current	magnetic system: energized	magnetic system: not energized	magnetic system: not energized	magnetic system: energized	
vision signs	white				
contacts	see presentation circuit diagram in initial state	see presentation circuit diagram in signalling state	see presentation circuit diagram in acknowledgement state	see presentation circuit diagram in initial state	

*For the RA 70 special arrangement without acknowledgement position the "Acknowledged" column is not available and for the circuit diagrams the "acknowledgement position" is omitted.

Connection

The connection, one to two copper conductors $0.5 \mathrm{~mm}^{2}$ to $2.5 \mathrm{~mm}^{2}$, is performed at the rear screw terminals of the signalling relay. With terminal cover, the terminal end is provided with an IP 20 protection degree, without cover, the protection degree is IP 00.
Supplementary elements screwed under the screw terminals can be used to realize 4.8 and/or 6.3 plug-type terminals, or respectively, solder terminals, with a protection degree of IP 00 at the terminal end.
Signalling relays may also be provided with a recovery diode arranged between the terminal connections 1 (cathode) and 2 (anode).
Depending on the specific circuit of relay contacts, the user might take appropriate measures to meet the requirements of the electromagnetic compatibility law.

Suppressor Circuits

Suppressor circuits are used for protection from cut-off voltage peaks caused by an inductivity connection and the reduction of contact load. It prevents, among other things, the malfunction and/or destruction of electronic and insulation parts caused by overvoltage, radio disturbance as well as it reduces material migration and contact erosion. The suppressor circuit should be placed directly at the spot of fault.
Normal suppressor circuits are:

- Diode suppressor circuits

Advantages: - no overvoltage (only approx. 0.7 V)

- low costs
- only for DC

- Varistor suppressor circuits

Advantages: - for DC and AC

- only low dropout times at the relay
- low costs
- protected against polarity reversal

- RC suppressor circuits

Advantages: - for DC and AC

- low overvoltage
- only low dropout times at the relay
- protected against polarity reversal

Disadvantages: - causes a dropout delay at the relay

- not protected against polarity reversal

Disadvantages: - relatively high remaining overvoltage

Disadvantages: - relatively high switch-on peaks

- not for small voltages
- increased dropout times at the relay
- R and C must be optimized for $L_{\text {coil }}$

Installation

The installation is done in panel cutouts of $54,5^{+0,5} \mathrm{~mm} \times 54,5^{+0,5} \mathrm{~mm}$. The panel thickness can be between -10 mm . The mounting position of the signalling relays (front surface) may be vertically to horizontally upwards. It is fastened by use of the supplied frame that must be slided onto the enclosure by manual power and latches tight into enclosure grooves. The fastening element has been designed in such a way to mount the signalling relays at the front side horizontally and vertically closely side by side.

Installation survey

Two, three or four signalling relays may also be installed into a quadruple panel enclosure according to DIN 43700. Here, the front frame is sized $144 \mathrm{~mm} \times 144 \mathrm{~mm}$ with a panel cutout of $138 \mathrm{~mm} \times 138 \mathrm{~mm}$.

Quadruple switchboard enclosure for 2 to 4 RA 70 signalling relays

Technical Parameter

Input parameter

Rated voltages:
Rated frequency:
Permitted tolerance of rated frequency:
Working range of coil voltage:
Response voltage:
Maximum operating voltage:
Operating mode:
Overload capacity of operating element: $2 \mathrm{U}_{\mathrm{N}} \mathrm{AC}$ or $\mathrm{DC}, 1$ min

Output parameter

Relay contact variants:

Contact application classes:
Max. switching voltage:
Contact arrangement:
Contact material:

- Type
- Main fields of use:
- Contact resistance:
- Main fields of application:

Maximum making capacity:
Limiting continuous current:
Maximum permitted continuous current:
Maximum breaking capacity:

Minimum switching capacity:
Maximum switching rate:
Voltage endurance:
Passing time of passing contacts:

Operational parameter:

Ambient temperature:
Impulse voltage withstand level: 4.0 kV , voltage form $1.2 / 50 \mu \mathrm{~s}$ according to EN 61810-5: 04.1999
Rated insulation Alternating voltage: $\quad 2.0 \mathrm{kV}$ at $\mathrm{U}_{\mathrm{N}} \leq 250 \mathrm{~V}$
Degree of pollution:
Clearances in air:
Creepage distances:
Site altitude:
HF interference immunity (1 MHz):
continuous operation
(pursuant to the requirement of power supply company)
working current or closed-circuit current
$\geq 30 \mathrm{~ms}$ at U_{N}
$\geq 15 \%$ of U_{N} at AC
$\geq 5 \%$ of U_{N} at $D C$
$\leq 7.0 \mathrm{VA}, \cos \varphi=0.32$ at AC (relay armature in initial position)
$\leq 3.5 \mathrm{VA}, \cos \varphi=0.62$ at AC (relay armature tightened)
$\leq 2.5 \mathrm{~W}$ at DC
$-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ at close-to-close arrangement
$-10^{\circ} \mathrm{C}$ up to $55^{\circ} \mathrm{C}$ for single arrangement (distance $\geq 60 \mathrm{~mm}$)
2.5 kV at $\mathrm{U}_{\mathrm{N}}=400 \mathrm{~V}$

12 V to $400 \mathrm{~V} \mathrm{AC}, 12 \mathrm{~V}$ to 220 V DC (see list of order numbers)
$0 \mathrm{~Hz}, 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
± 6 \%
Class 1 in line with EN 61810-1: 04.1999
$\leq 0,8 \times U_{N}$
$1,1 \times U_{N}$

2 changeover contacts
1 changeover contact and 1 passing contact
1 changeover contact and 1 make contact in center position
1 make contact in center position and 1 passing contact
1 changeover contact, directly operated and 1 changeover contact
1 changeover contact, directly operated and 1 passing contact
1 changeover contact, directly operated and 1 make contact in center position
1, 2, 3 in line with DIN EN 60255-23 / 03.97
≤ 250 V AC/DC
single contact
hard silver - AgCu4
$24 \mathrm{~V} \ldots 250 \mathrm{~V} ; 5 \mathrm{~mA} . . .10 \mathrm{~A}, \geq 1 \mathrm{~W}$
$\approx 40 \mathrm{~m} \Omega$ in new condition
universal application at medium AC and DC loads
10 A
5 A
6 A
$10 \mathrm{~A} \cos \varphi=1.0230 \mathrm{VAC}$
$6 \mathrm{~A} \cos \varphi=0.4230 \mathrm{VAC}$
$0.6 \mathrm{~A} \tau=0 \mathrm{~ms} \quad 220 \mathrm{~V}$ DC
$0.2 \mathrm{~A} \tau=40 \mathrm{~ms} 220 \mathrm{VDC}$
$24 \mathrm{~V}, 50 \mathrm{~mA}$
≤ 600 operating cycles per hour
$\geq 1 \times 10^{5}$ operating cycles at a maximum breaking capacity
$\geq 40 \mathrm{~ms}$

2 in line with EN 61810-5: 04.1999 for $U_{N}=400 \mathrm{~V} \mathrm{AC}$
3 in line with EN 61810-5: 04.1999 for $U_{N} \leq 250$ V AC
$\geq 3 \mathrm{~mm}$ in line with EN 61810-5: 04.1999
$\geq 4 \mathrm{~mm}$ in line with EN 61810-5: 04.1999
$\leq 2,000 \mathrm{~m}$ above sea level
Class III pursuant to DIN IEC 255 Part 22-1 / 05.91
1.0 kV normal-mode voltage (transverse voltage)
2.5 kV common-mode voltage (longitudinal voltage)

Ambient conditions, environmental test procedure:

Low temperature:

High temperature:
Continuous damp heat:
Cyclical damp heat:
Corrosive atmosphere:
Salt fog:
Bumping:

Vibrations, sinusoidal:

DIN EN 60068-2-1, Issue 03.1995; Test Ab
$-10^{\circ} \mathrm{C}$-function
$-40^{\circ} \mathrm{C}$ strength/transport/storage
DIN EN 60068-2-1, Issue 03.1995; Test Bb $50^{\circ} \mathrm{C}-; 55^{\circ} \mathrm{C} ; 70^{\circ} \mathrm{C}$
DIN EN 60068-2-3, Issue 12.1986; Test Ca
$\left(40^{\circ} \mathrm{C}\right)$
DIN EN 60068-2 -30, Issue 09.1996; Test Db40
$\left(25^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}\right)$
DIN EN 60068-2-42 / 43, Issue 08.1985 08.1985; Test Ki (Kc+Kd)
$\left(\mathrm{SO}_{2} 10 \mathrm{mg} / \mathrm{m}^{3}+\mathrm{H}_{2} \mathrm{~S} 0,75 \mathrm{mg} / \mathrm{m}^{3} ; 40^{\circ} \mathrm{C}\right)$
DIN EN 60068-2-11, Issue 08.1985; Test Ka
$\left(30 \mathrm{~g} \pm 1 \mathrm{~g} \mathrm{NaCl} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{O}\right)$
DIN EN 60068-2 -29, Issue 03.1995; Test Eb
strength: $\quad 150 \mathrm{~m} / \mathrm{s}^{2} ; 6 \mathrm{~ms}$
strength: $\quad 100 \mathrm{~m} / \mathrm{s}^{2} ; 16 \mathrm{~ms}$
function: $\quad 50 \mathrm{~m} / \mathrm{s}^{2} ; 16 \mathrm{~ms}$
DIN EN 60068-2 -6, Issue 05.1995; Test Fc
strength: \quad Frequency range $10 \ldots 500 \mathrm{~Hz}$ vibration displacement $0.15 \mathrm{~mm}, \leq 60 \mathrm{~Hz}$ cut frequency 60 Hz acceleration $20 \mathrm{~ms}^{-2},>60 \mathrm{~Hz}$
function: $\quad 10 \ldots 500 \mathrm{~Hz}$ $0.075 \mathrm{~mm}, \leq 60 \mathrm{~Hz}$ cut frequency 60 Hz acceleration $10 \mathrm{~ms}^{-2}$, $>60 \mathrm{~Hz}$
function, strength: Frequency range $5 \ldots 80 \mathrm{~Hz}$ 0.55 mm , $\leq 30 \mathrm{~Hz}$ cut frequency 30 Hz acceleration $20 \mathrm{~ms}^{-2},>30 \mathrm{~Hz}$

Installation and connection conditions:

Operating position
Visibility of display: relay enclosure:
Type of Protection

- relay enclosure:
- terminals:

Connections:

Connectable supply leads:
Fastening:
Front dimensions:
Panel cutout
Weight
Dimensioned drawing
Treatment instruction:

General data:

Manufacturing quality:
Management system
Useful life:
front surface vertically to horizontally upwards
up to approx. 5 m at a viewing angle of $90^{\circ} \pm 20^{\circ}$ to the front surface
Enclosed panel bay, transparent display window
according to DIN EN 60529-1: 2000-12
IP 40
IP 00, with additional terminal cover IP 20
screw connection
4.8 and/or 6.3 plug-type terminals (DIN 46244), or respectively, solder terminals, through supplementary elements which have to be separately ordered and supplied and then be screwed on.
1 or $2 \times 0.5 \mathrm{~mm}^{2}$ up to $2.5 \mathrm{~mm}^{2} \mathrm{Cu}$ single or multistranded
1 or $2 \times 1 . \mathrm{mm}^{2}$ up to $2 . \mathrm{mm}^{2} \mathrm{Cu}$ extra finely stranded
latching of frame
$60 \mathrm{~mm} \times 60 \mathrm{~mm}$
$54.5^{+0,5} \mathrm{~mm} \times 54.5^{+0,5} \mathrm{~mm}$
about 0.3 kg
Rs 805275
Rs 808,278

The RA 70 signalling relays are manufactured in line with a quality According to the requirements given in DIN ISO 9004 and documented according to DIN ISO 9001.
Expected value ≥ 20 years, if the electrical and/or mechanical service life has not been exceeded before.
$-50^{\circ} \mathrm{C}$ up to $70^{\circ} \mathrm{C}$
enclosed and vented rooms

Conformity of Standards

The data given for the RA 70 signalling relays, including accessories, refer to the following national and international standards:

DIN VDE 0435-110 / VDE Part 110: 1989-04
Electrical relays; terms
DIN EN 60810-1 / VDE 0435 Part 201: 1999-04
Electromechanical non-specified-time relays,
Part 1: General Requirements
DIN EN 60810-5 / VDE 0435 Part 140: 1999-04
Electromechanical non-specified-time relays,
Part 5: Insulation coordination
DIN EN 60255-23 / VDE 0435 Part 120: 1997-03
Part 23: Electrical relays; contact behavior
DIN EN 60529 / VDE 0470 Part 1: 2000-12
Degrees of protection provided by enclosure (IP code)
DIN EN 60999-1 / VDE 0609 Part 1: 2000-12
Connection material - electrical copper conductors - safety requirements for screw terminal connections and screwless terminals

CE Conformity

Presently, no CE labeling for "Electromechanical non-specified-time relays" is required in the guidelines.
However, the signalling relays of the RA 70 type are in line with the European guidelines

- 73/23/EEC "Low-voltage guideline" as of 19.02.1973 and
- 89/392/EEC of 03.05.89
including the revisions concerning the use in case of terminal cover (degree of protection: IP 20) except the following deviation from standard EN 61810-1: 1999.04:
In the factory-built state, company logo and type designation are not legible.
The CE marking will be attached onto the side print of the relay or on the package.
Dimensions and Labeling

Dimensioned drawing Rs 805275

2nd changeover contact

Dimensioned drawing Rs 801 837: Arrangement with 2 changeover contacts

Initial state

Dimensioned drawing Rs 801,838: Arrangement with 1 changeover contact and 1 passing contact

Initial state

> Changeover contact

$80-\infty$
$80-$
$80-6$
$70-4$

Dimensioned drawing Rs 801,839: Arrangement with 1 changeover contact and 1 make contact in center position

Dimensioned drawing Rs 801,840: Arrangement with 1 make contact in center position and 1 passing contact

Dimensioned drawing Rs 801,722: Arrangement with 1 changeover contact, directly operated and 1 changeover contact

Changeover contact directly operated

Acknowledgement state $8 \circ-\longrightarrow 6$
Dimensioned drawing Rs 801,723: Arrangement with 1 changeover contact, directly operated, and 1 passing contact

Changeover contact directly operated
Operating element dropped out

Make contact in center position

Dimensioned drawing Rs 801,724: Arrangement with 1 changeover contact, directly operated and 1 make contact in center position

List of Order Numbers - Accessories

Terminal cover for IP 20 degree of protection 4.8 plug-type terminals according to DIN 46244 6.3 plug-type terminals according to DIN 46244 Masking frame for panel cutout $58 \mathrm{~mm} \times 58 \mathrm{~mm} * *$ Quadruple panel casing for 2 to 4 RA 70 signalling relays

PI. no. 1. 732848000
PI. no. 1. 732899000
PI. no. 1. 732899001
PI. no. 1. 732898000
PI. no. 1. 732846000

[^0]

Die Experten der EAW Relaistechnik GmbH nehmen sich gern Zeit für ein informatives Gespräch mit Ihnen. Natürlich kostenlos und unverbindlich. So haben Sie Gewissheit, dass wir die richtigen Partner sind.

The specialists of EAW Relaistechnik GmbH will be glad to take time out to meet you for informative talks. Convince yourself - without charge - that you have found the right partner in us.

EAW RELAISTECHNIK GMBH
Hauptstraße 13
10317 Berlin, Germany
www.eaw-relaistechnik .de
Phone +49-30-55 762200
Fax +49-30-55 762203
e-mail vertrieb@eaw-relaistechnik.de

[^0]: **For substitutes in case of exchange of RA 6 and RA 7 signalling relays (panel cutout 55^{\square}) by RA 70 signalling relay

